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ABSTRACT

In this note we consider a certain class of closed Riemann surfaces which

are a natural generalization of the so called classical Humbert curves.

They are given by closed Riemann surfaces S admitting H ∼= Z
k

2 as a

group of conformal automorphisms so that S/H is an orbifold of signa-

ture (0, k + 1; 2, . . . , 2). The classical ones are given by k = 4. Mainly,

we describe some of its generalities and provide Fuchsian, algebraic and

Schottky descriptions.
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1. Introduction

In 1894, while investigating a net of conics, G. Humbert [12] encountered a fam-

ily of curves C7 ⊂ P3(C) of genus g = 5. Later, in 1907, the same curves were

encountered by Baker [3], related to a Weddle surface. If we denote by ω1, . . . , ω5

five fundamental points of P3(C), as a curve C7 lies in each cone with vertex

at ωi over an elliptic curve Ei, there are five branched coverings πi : C7 → Ei

and C7 possesses five everywhere finite elliptic integrals. Moreover, each curve

C7 is invariant for each reflection hi of C4 centered at the line corresponding

to ωi, and then C7 is invariant under a group H of birational transformations

isomorphic to Z4
2. We quote Humbert [12, pp. 140]: “La courbe C7 et, par

suite, les courbes σ6 et ω̃6 donnent un exemple de courbes de genre cinq ayant

cinq intégrales de première espèce réductibles aux intégrales elliptiques; de plus

ces courbes possèdent cinq transformations birrationnelles en elles-mêmes. Il

serait intéressant de rechercher, d’une manière général, les courbes

algébriques possédant des propiétés analogues.” In this way, a curve

C7 is a closed Riemann surface of genus g = 5 admitting a group H ∼= Z4
2

of conformal automorphisms so that S/H is the Riemann sphere marked at

exactly 5 points of order two. In this article we will study compact Riemann

surfaces (algebraic curves) that possess properties analogous to those of Hum-

bert curves C7. Some facts about Humbert curves, mainly from the point of

view of algebraic geometry, may be found, for instance, in [1, 5, 12, 18].

An orbifold O consists of a Riemann surface S (the underlying Riemann

surface structure of O) and a finite set (possibly empty) of conical points pj

in S of order nj . The signature of the orbifold O is (γ, k; n1, . . . , nk), where

γ denotes the genus of S. An automorphism of the orbifold O is a conformal

automorphism of the underlying Riemann surface structure which permutes the

conical points preserving orders. The group of automorphisms of the orbifold

O will be denoted by Autorb(O). We use the symbols “≤”and “E” to denote

“subgroup” and “normal subgroup”, respectively.

A closed Riemann surface S of genus g is called a generalized Humbert

curve of type k, where k ≥ 1, if it has a conformal group of automor-

phisms H ∼= Zk
2 (direct sum of k copies of Z2) such that S/H has signature

(0, k + 1; 2, . . . , 2) (that is, the Riemann sphere with k + 1 conical points of

order 2); the group H will be called a generalized Humbert group of type

k. Observe that the case k = 4 corresponds exactly to the case S = C7. A
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pair (S, H), where S is a generalized Humbert curve of type k and H ≤ Aut(S)

is a generalized Humbert group of type k, is called a generalized Humbert

pair of type k. If (S, H) is a generalized Humbert pair of type k, then the

Riemann-Hurwitz formula asserts that the genus of S is gk = 1 + 2k−2(k − 3).

In particular, for k ≥ 3, the type k is uniquely determined by the genus gk of S.

Two generalized Humbert pairs (S1, H1) and (S2, H2) are called conformally

equivalent if there exists a conformal homeomorphism ϕ : S1 → S2 such that

ϕ−1H2ϕ = H1. The locus of conformal classes of generalized Humbert curves of

genus gk, in the corresponding moduli space, has complex dimension (k−2) for

k ≥ 3 and 0 for k = 2. We will see in Remark 2.9 that this locus is connected.

A generalized Humbert curve is a closed Riemann surface S admitting

an Abelian group H ≤ Aut(S) of conformal automorphisms so that S/H is the

Riemann sphere and S is the homological covering of S/H . In the case that

S/H is of signature (0, k+1; 2, . . . , 2) we obtain the generalized Humbert curves

of type k. If the signature of S/H is (0, k + 1; n, . . . , n), then H ∼= Zk
n and we

obtain the generalized Fermat curves [7]. The most general situation will be

discussed elsewhere. A higher dimensional situation may be found in [10].

1.1. Spherical Humbert curves. The only spherical orbifolds of signature

(0, k + 1; 2, . . . , 2) are given for k = 1, 2 as follows.

(1) k = 1 corresponds to S = Ĉ with H = 〈J(z) = −z〉;

(2) k = 2 corresponds to S = Ĉ with H = 〈J(z) = −z, T (z) = 1/z〉.

In particular, the Riemann sphere is a generalized Humbert curve of both

types k = 1, 2. We see that for g = 0 (that is, for the Riemann sphere) there

are generalized Humbert groups of two different types, contrary to the case

g ≥ 1.

1.2. Euclidean Humbert curves. The only Euclidean orbifolds of signature

(0, k + 1; 2, . . . , 2) are given by k = 3. To each complex number τ with positive

imaginary part we can associate the torus S = C/Λτ , where Λτ = 〈A(z) =

z + 1, Bτ (z) = z + τ〉. Furthermore, observe that H = Kτ/Λτ , where Kτ =

〈Λτ , J(z) = −z, L(z) = −z + 1/2, M(z) = −z + 1/2 + τ/2〉 acts on S with

quotient orbifold of signature (0, 4; 2, 2, 2, 2). In particular, every genus one

Riemann surface is a generalized Humbert curve of type k = 3.

1.3. Hyperbolic Humbert curves. If k ≥ 4, then every orbifold of signature

(0, k + 1; 2, . . . , 2) is hyperbolic. We will mainly deal with this case in the rest
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of this work. The first three hyperbolic ones are given by the pairs (k, gk) ∈

{(4, 5), (5, 17), (6, 49)}.

1.4. Standard Generators. Let (S, H) be a generalized Humbert pair of

type k. It is clear from the signature (0, k + 1; 2, . . . , 2) of S/H that there are

precisely k + 1 involutions in H with fixed points; in fact, any k of them can

be chosen as generators of H , and the remaining one is given by the product

of the chosen k. Such a set of generators of H will be called a standard

set of generators, and any of the involutions with fixed points will be called a

standard generator of H .

1.5. Towers of generalized pairs.

1.5.1. Going down. Let (S, H) be a generalized Humbert pair of type k ≥ 2

and h be a standard generator of H . The cardinality of the set of fixed points

of h is clearly 2k−1, and, correspondingly, there is a two-fold branched covering

S −→ S/〈h〉 = O

where the quotient orbifold O has signature (1 + 2k−3(k − 4), 2k−1; 2, . . . , 2),

whose underlying Riemann surface structure is naturally a generalized Humbert

curve of type k − 1, with generalized Humbert group induced by H/〈h〉.

1.5.2. Going up. Conversely, let us consider a generalized Humbert pair (S, H)

of type k ≥ 1 and let h1, . . . , hk, t = h1h2 · · ·hk the standard generators of

H . Consider a closed disc D ⊂ S, containing exactly one fixed point of t,

so that t(D) = D and h(D) ∩ D = ∅, for all h ∈ H − 〈t〉. Choose a point

p ∈ D so that t(p) 6= p and a simple arc α ⊂ D connecting p with t(p) so that

t(α) = α (in particular, α contains a fixed point of t). Now consider the two-fold

branched cover of S defined by the following properties: (i) any simple loop on

S −
⋃

h∈H h(D) lifts to exactly 2 simple loops and (ii) the branching locus is

exactly at the the points h(p), for h ∈ H . This is given by cutting S along the

arcs h(α), for h ∈ H−〈t〉, and gluing two copies of S (similar to the construction

of hyperelliptic Riemann surfaces from the Riemann sphere). In this way we

obtain a closed Riemann surface Ŝ and a two-fold branched cover π : Ŝ → S;

this cover corresponds to a conformal involution u : Ŝ → Ŝ. Every h ∈ H lifts

to a conformal involution ĥ so that ĥu = uĥ and Ĥ = 〈ĥ1, . . . , ĥk, u〉 ∼= Z
k+1
2 . It

is not difficult to see that (Ŝ, Ĥ) is a generalized Humbert pair of type k + 1 so

that ĥ1, . . . , ĥk, u and ĥ1 · · · ĥku are its standard generators. This construction
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may also be described as follows. Consider a generalized Humbert pair (S, H)

of type k, and on the orbifold S/H choose any point x1 which is disjoint from

the conical set. Now consider the new orbifold, say O, given by adding the

point x1 as a conical point of order 2 to the previous ones on S/H . Let Γ

be the orbifold fundamental group of O. Then, the commutator subgroup Γ′

provides a generalized Humbert pair (S̃, H̃), with the property that on Γ there

is an element of order 2, say w, so that if we denote by N the smallest normal

subgroup of Γ containing w, then K = Γ/N provides a uniformization of S/H

and K ′ provides an uniformization of S.

This work is organized as follows. In Section 2 we prove and pairs Humbert

generalized hyperbolic of case the consider their non-hyperellipticity and their

non-trigonality. We also provide Fuchsian uniformizations and we observe the

topological rigidity of a generalized Humbert action for any fixed type k. In

Section 3 we prove that two generalized Humbert groups acting on the same

generalized Humbert curve S are conjugate in the full automorphism group of

S. In Section 4 we provide an algebraic description of the conformal classes of

generalized Humbert pairs, that allows us to characterize their moduli spaces.

In Section 5 we give a Schottky uniformization for generalized Humbert pairs;

we also study their uniformizations by some special groups, the generalized

Humbert–Whittaker groups. We thank the referee for sugestions that improved

the presentation.

2. Hyperbolic generalized Humbert curves

From this section on we restrict to the case of hyperbolic generalized Humbert

curves; that is, k ≥ 4 or, equivalently, g ≥ 5. Here we prove three facts about

them: (1) non-hyperellipticity, (2) topological rigidity, and (3) non-trigonality.

We also give their Fuchsian uniformizations in terms of commutator subgroups.

2.1. Non-Hyperellipticity of hyperbolic generalized Humbert curv-

es. Classical Humbert curves C7 (see the Introduction) are known to be non-

hyperelliptic Riemann surfaces of genus 5. We proceed to see that this property

also holds for the generalized Humbert curves.

Theorem 2.1: Hyperbolic generalized Humbert curves are non-hyperelliptic.
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Proof. Assume we have a generalized Humbert pair (S, H) of type k ≥ 4 and

let us suppose S is hyperelliptic. In this case we have a branched two-fold

holomorphic covering Q : S → Ĉ. As the hyperelliptic involution is in the

center of the group of conformal automorphisms of S, H induces a group of

Möbius transformations isomorphic to either Zk
2 or Z

k−1
2 . As each of any two

different commuting Möbius transformations of order two permutes the fixed

points of the other [15], the only possible groups are (i) the trivial group, or (ii)

Z2, or (iii) Z2
2; in particular, k ∈ {1, 2, 3}, a contradiction.

2.2. Non-trigonality of hyperbolic generalized Humbert curves. It

is a well-known fact that each Humbert curve of genus g = 5 is non-trigonal

[18]; that is, it has no holomorphic map of degree 3 onto the Riemann sphere.

We now prove that this holds for all generalized Humbert curves of type k with

k ≥ 4. In fact this is a consequence of [14]; but for the sake of completeness we

now give a short proof, which is just a simple modification of an argument due

to R. Accola in [1].

Theorem 2.2: Hyperbolic generalized Humbert curves are non-trigonal.

Proof. Let S be a hyperbolic generalized Humbert curve. As we saw in Section

1.4, there is a branched covering π : S → R, of some finite degree d, where

R is a Humbert curve of genus 5. Let us assume S is trigonal, and consider

a degree three branched covering f : S → Ĉ. For each x ∈ R we consider

π−1(x) = {y1, . . . , yr}. Let nj be the degree of π at yj , for j = 1, . . . , r. Set

g : R → Ĉ by the rule g(x) = f(y1)
n1 · · · f(yr)

nr . Then g has degree 3, a

contradiction to the non-trigonality of R.

2.3. Fuchsian uniformizations. Since every hyperbolic Riemann surface

may be uniformized by a Fuchsian group, we now provide a Fuchsian uniformiza-

tion for hyperbolic generalized Humbert pairs by the commutator subgroup of

appropriate genus zero Fuchsian groups.

Theorem 2.3: Let (S, H) be a hyperbolic generalized Humbert pair. If Γ

denotes a Fuchsian group (acting on the unit disc ∆) uniformizing the orbifold

S/H , then (S, H) is conformally equivalent to (∆/Γ′, Γ/Γ′), where Γ′ denotes

the commutator subgroup of Γ.
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Proof. Since k ≥ 4, the quotient orbifold S/H of signature (0, k + 1; 2, . . . , 2)

admits a uniformization by a Fuchsian group with presentation as follows.

(2.4) Γ = 〈x1, . . . , xk+1 : x2
1, . . . , x

2
k+1, x1x2 · · ·xk+1〉.

The surface S is then uniformized by a torsion free normal subgroup F of Γ

so that

Γ/F ∼= H.

As F is torsion free, we have that xj /∈ F , for j = 1, . . . , k+1, and as H ∼= Zk
2 ,

we also have that (xixj)
2 ∈ F , for each i, j ∈ {1, . . . , k + 1}. Let us consider

the normal closure, say Γ2, in Γ of the collection

{(xixj)
2 : 1 ≤ i, j ≤ k + 1}.

Then Γ2 = Γ′ and Γ′ ≤ F ≤ Γ. Since Γ/Γ′ ∼= H , we obtain Γ2 = Γ′ = F .

Corollary 2.5: Let (S, H) be a hyperbolic generalized Humbert pair. Then

the normalizer of H in Aut(S), denoted by AutH(S), is obtained as the lifting

of Autorb(S/H) under the natural regular branched covering S → S/H . In

particular, AutH(S)/H is isomorphic to Autorb(S/H).

Later, in Section 3, we will obtain that for k ∈ {4, 5} Humbert groups are

necessarily unique in the corresponding Humbert curves. In these cases, Corol-

lary 2.5 tells us that AutH(S) = Aut(S); in particular, this provides a simple

way to compute the possible total automorphism groups for Humbert curves.

For every k ≥ 4, let (S, H) be a generalized Humbert pair of type k. As

Autorb(S/H) is a finite group of Möbius transformations, and these are all

known, one may explicitly compute AutH(S). In the following result we present

some possibilities that appear for all possible values of k.

Proposition 2.6: For every k ≥ 4, there are three generalized Humbert curves

of type k admitting larger groups of automorphisms with triangular signature.

For each even (respectively odd) k ≥ 4 there is one (respectively two) family(ies)

of generalized Humbert pairs of type k admitting a group of conformal automor-

phisms isomorphic to a Z2-extension of the generalized Humbert group. The

corresponding signature σ and uniformizing group Gr for the quotient orbifolds

are given as follows, where the subindex r for the group indicates its order.

(1) σ = (0, 3; k+1, 4, 2), r = 2k+1 · (k +1) and G2k+1·(k+1) has presentation

〈x, y : xk+1, y4, (xy)2, (xjy)4, 3 ≤ j ≤ 2r〉 ∼= Dk+1 ⋉ H.
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(2) σ = (0, 3; 2k, k, 2), r = 2k · k and G2k·k has presentation

〈x, y : x2k, yk, (xy)2, (xk+1y)2, (xjyj)2, 1 ≤ j ≤ r + 1〉 ∼= Zk ⋉ H.

(3) σ = (0, 3; 2(k − 1), 4, 2), r = 2k+1 · (k − 1) and G2k+1·(k−1) has presen-

tation

〈x, y : x2(k−1), y4, (xy)2, (xk−1y2)2, (x2k−3y3)2, (xjy)4, 3 ≤ j ≤ r + 1〉

∼= Dk−1 ⋉ H.

(4) For k even, let t = k/2. Then σ = (0, t + 2; 4, 2, 2, . . . , 2), from where

the family is (t − 1)-dimensional, r = 2k+1, and the group G2k+1 has

presentation

〈x, y, z1, . . . , zt : x4, y2, z2
j , xyz1 . . . zt,

(zizj)
2, (x2zj)

2, (x3zjx
3)2, (x3zjxzi)

2, 1 ≤ i, j ≤ t〉 ∼= Z2 ⋉ H.

(5) For k odd, let t = (k+1)/2. Then σ = (0, t+2; 2, 2, 2, . . . , 2), from where

the family is (t−1)−dimensional, r = 2k+1, and G2k+1 has presentation

〈x, y, z1, . . . , zt : x2, y2, z2
j , xyz1 . . . zt,

(zizj)
2, (zixzjx)2, 1 ≤ i, j ≤ t〉 ∼= Z2 ⋉ H.

(6) For k odd, let t = (k−1)/2. Then σ = (0, t+2; 4, 4, 2, . . . , 2), from where

the family is (t− 1)-dimensional, r = 2k+1, and G2k+1 has presentation

〈x, y, z1, . . . , zt : x4, y4, z2
j , xyz1 . . . zt,

(zizj)
2, (zjx

2)2, (xzjx)2, (zixzjx
3)2, 1 ≤ i, j ≤ t〉 ∼= Z2 ⋉ H.

Remark 2.7: Note that the curves in the first three cases of Proposition 2.6

correspond to considering the groups acting on the orbifold S/H given by the

dihedral group Dk+1 of order 2(k + 1), the cyclic group of order k, and the

dihedral group Dk−1 of order 2(k − 1) respectively. Therefore, for large val-

ues of k, these are precisely the curves with largest group of automorphisms

Autorb(S/H) in the family of generalized Humbert curves of type k. In the

case k = 4, the first four cases listed in Proposition cover all the possibilities

for Humbert curves with conformal groups of automorphisms larger than the

Humbert groups ([5, 16, 19]). For some values of k we may also obtain the

groups A4 ⋉ H , A5 ⋉ H and S4 ⋉ H .
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2.4. Topological rigidity. We say that two pairs (S1, H1) and (S2, H2),

where Sj is a closed Riemann surface and Hj a subgroup of its conformal

automorphisms, are topologically equivalent if there is a homeomorphism

φ : S1 → S2 so that φH1 φ−1 = H2.

Theorem 2.8: All generalized Humbert pairs of the same type k ≥ 4 are

topologically equivalent.

Proof. Since each Fuchsian group Γ uniformizing the quotient S/H for a gener-

alized Humbert pair (S, H) of type k ≥ 4 has a presentation of the form (2.4),

they are all topologically equivalent by Nielsen isomorphism theorem (see [15]),

and the result follows from Theorem 2.3 and the fact that the commutator

subgroup Γ′ is uniquely defined inside Γ.

Remark 2.9: The rigidity condition given in Theorem 2.8 asserts that the (k−2)-

complex dimensional locus of conformal classes of generalized Humbert curves

of type k ≥ 4 is connected, in the corresponding moduli space.

2.5. Fixed point free subgroups of generalized Humbert groups. In

this section we study certain interesting subgroups of a generalized Humbert

group acting freely on the corresponding generalized Humbert surface. More

precisely, we have the following result.

Proposition 2.10: If (S, H) is a generalized Humbert pair of type k ≥ 4, then

there are N = k (k +1)/2 subgroups {Hj
0}

N
j=1 of H acting freely on S such that

Hj
0
∼= Z

k−2
2 and such that S/Hj

0 is a hyperelliptic Riemann surface of genus

k−2 for each 1 ≤ j ≤ N . Moreover, if k is odd, then there is a unique subgroup

H1 of H acting freely on S such that H1
∼= Z

k−1
2 and such that S/H1 is a

hyperelliptic Riemann surface of genus (k − 1)/2. Furthermore, Hj
0 ≤ H1 for

all 1 ≤ j ≤ N .

Proof. Consider a set of standard generators {h1, . . . , hk} for H , and let hk+1 =

h1 h2 . . . hk. Fixing any one of them, say h, consider the subgroup of H given

by

H0 = 〈hhi1 , . . . , hhik−2
〉,

where hi1 , . . . , hik−2
are any k−2 different elements in {h1, h2, . . . , hk+1}−{h}.

It is clear that any such H0 has the required properties, where the hyperelliptic

involution on S/H0 is induced by h, and also that N = k (k + 1)/2 is the
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number of such subgroups. Note that in this way we obtain all the subgroups

of H isomorphic to Z
k−2
2 that do not contain a standard generator, as required.

Assume now that k is odd and consider the subgroup

H1 = 〈h1h2, h1h3, . . . , h1hk〉.

It is not difficult to see that H1 acts freely on S and that R1 = S/H1 is a

hyperelliptic Riemann surface, with the hyperelliptic involution being induced

by any hj . For the uniqueness, assume Z
k−1
2

∼= H2 ≤ H acts freely on S, and set

R2 = S/H2. Again, R2 is a hyperelliptic Riemann surface, with hyperelliptic

involution induced by any hj . Both hyperelliptic surfaces R1 and R2 are 2-fold

branched covers of the Riemann sphere with the same conical points. It follows

that the identity automorphism of S/H lifts to a conformal homeomorphism

t : R1 → R2; in particular, there exists an h ∈ H that conjugates H1 onto H2.

As H is Abelian, H1 = H2.

Remark 2.11: If we consider k = 5 in Proposition 2.10, then the quotient Rie-

mann surface R = S/H0 is hyperelliptic of genus 3 and it admits a group

of conformal automorphisms U = H/H0
∼= Z

2
2 so that R/U has signature

(0, 6; 2, . . . , 2) and U contains the hyperelliptic involution. There are also non-

hyperelliptic Riemann surfaces M of genus 3 admitting a group V ∼= Z2
2 of

conformal automorphisms so that M/V has signature (0, 6; 2, .., 2). These non-

hyperelliptic Riemann surfaces have been used in [11] to construct non-

isomorphic surfaces with isomorphic Jacobians without polarization.

3. Uniqueness of generalized Humbert groups

Given a generalized Humbert curve S of type k, one may wonder about the

uniqueness of the corresponding generalized Humbert group as a subgroup of

Aut(S). In case k = 4, this follows from [16]. Our next result shows that this

also holds in the case k = 5, by an argument using Weierstrass points, which

also provides a short proof for k = 4, included here for the sake of completeness.

Theorem 3.1: Generalized Humbert groups of type k = 4 and 5 are unique.

In particular, they are normal in the total group of automorphisms of the cor-

responding generalized Humbert curve S. Moreover, in case k = 4 the set

of Weierstrass points of S coincides with the set of fixed points of standard

generators of the generalized Humbert group.
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Remark 3.2: The last assertion in Theorem 3.1 was already observed by Edge

in [5].

Corollary 3.3: Each Fuchsian group with presentation as in (2.4) and k ∈

{4, 5} is uniquely determined by its commutator subgroup.

Corollary 3.4: Let S be a genus g ∈ {5, 17} generalized Humbert curve and

H E Aut(S) be its generalized Humbert group. Then, Aut(S) is obtained by

the lifting to S of Autorb(S/H).

3.1. Proof of Theorem 3.1. In order to prove our result, we first recall

the following facts on Weierstrass points (see [6]). Let S be a closed Riemann

surface of genus g ≥ 1. If W ⊂ S denotes the set of all the Weierstrass points

in S, then
∑

p∈W

τ(p) = g3 − g ,

where

1 = n1 < n2 < · · · < ng < 2g

is the sequence of gaps at p and τ(p) =
∑g

j=1(nj − j) is the weight at p.

3.1.1. The case k = 4. Since S is non-hyperelliptic, n2 = 2, and since S is

non-trigonal, n3 = 3. Let a ∈ H be a standard generator of H and let p ∈ S be

a fixed point of a. Consider the branched two-fold covering P : S → T = S/〈a〉,

where T is an orbifold of signature (1, 8; 2, . . . , 2). Since there are meromorphic

maps T → Ĉ of degree 2 and 3 with only one pole at P (p), by composing

such meromorphic functions with P we see that n4 ≥ 5 and n5 ≥ 7. Therefore

τ(p) ≥ 3. Since there are 40 different fixed points of standard generators of

H , each one with weight at least 3, and since the sum of the weight of all

Weierstrass points is 120, we obtain that τ(p) = 3 and that the set of Weierstrass

points in S coincides with the set of fixed points of standard generators of a

generalized Humbert group. If we had two different Humbert groups acting on

S, there would be a standard generator of one of them not contained in the

other. As the stabilizer in Aut(S) of any point is cyclic, the fixed points of such

a standard generator would be different from the 40 ones given by the other

group, a contradiction that completes the proof in case k = 4.

3.1.2. The case k = 5. Let us start with the following facts.
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Lemma 3.5: Let S be a generalized Humbert curve of type k = 5, H be a

generalized Humbert group acting on S, and p ∈ S be a fixed point of some

standard generator h of H . Then, p is a Weierstrass point of S and

τ(p) ≥ 21.

Proof. Consider the branched two-fold covering P : S → T = S/〈h〉. Then T is

a generalized Humbert curve of genus 5, and the point P (p) is not a fixed point

of any of the standard generators of the generalized Humbert group (induced

by) H/〈h〉 acting on T . It follows from the case k = 4 that P (p) is not a

Weierstrass point of T , and hence there are meromorphic maps fd : T → Ĉ of

degree d with only one pole, at P (p), for each d ≥ 6.

It follows that there are meromorphic maps fd ◦P : S → Ĉ of degree 2d with

p as the unique pole, with d as before, and therefore

n12 ≥ 13, n13 ≥ 15, n14 ≥ 17, n15 ≥ 19, n16 ≥ 21, n17 ≥ 23.

In this way we obtain that the minimum value that τ(p) may have is 21, as

desired.

Remark 3.6: We recall that for ℓ : X → Y a non constant holomorphic map

between compact Riemann surfaces and x any point of X , it holds that if n

is a gap at ℓ(x), then n is a gap at x ([14]). With the notation of the above

proof, we know that the gaps at P (p) are 1, 2, 3, 4, 5, and the gaps at P (q)

are 1, 2, 3, 5, 7, for q a fixed point of a standard generator different from h.

Therefore 1, 2, 3, 4, 5, 7 are gaps at every fixed point of a standard generator of

a generalized Humbert group of type 5.

Lemma 3.7: In a generalized Humbert curve of type k = 5, two different gen-

eralized Humbert groups of type k cannot have a common standard generator.

Proof. Suppose that there exist two different generalized Humbert groups on a

generalized Humbert curve S of type k = 5, say H1 and H2, with a common

standard generator h. Then, we would have two different generalized Humbert

groups on the generalized Humbert curve of type 4 given by S/〈h〉, a contra-

diction.

We use the notation WH ⊂ W to denote the Weierstrass points obtained as

fixed points of the generalized Humbert group H .
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Lemma 3.8: In a generalized Humbert curve of type k = 5 there are at most

two generalized Humbert groups.

Proof. Let H be a generalized Humbert group on S of type k = 5. As each

standard generator of H has exactly 16 fixed points and there are exactly 6 of

them, #(WH) = 96. Now, Lemma 3.5 asserts

(∗)
∑

p∈WH

τ(p) ≥ 2016 .

We also have

(∗∗)
∑

p∈W

τ(p) = 4896.

As a consequence of Lemma 3.7, if there exist N ≥ 2 different generalized

Humbert groups acting on S, say H1, . . . , HN , then WHi
∩WHj

= ∅, for i 6= j,

and the sum in (∗∗) restricted to the subset WH1
∪ · · · ∪ WHN

will be at least

2016 × N . Therefore N ∈ {1, 2}.

Now we proceed to prove the theorem for the case k = 5. From Lemma 3.8,

we need only consider the case when there are exactly two different general-

ized Humbert groups on S of genus 17. Let us denote them by H1 and H2,

respectively. For each h ∈ H2 we set Hh = hH1h. As Hh is a generalized

Humbert group, Hh ∈ {H1, H2}. Since h ∈ H2 and H1 6= H2, necessarily

Hh = H1. Therefore, H2 belongs to the normalizer of H1 in Aut(S). Inter-

changing the roles of H1 and H2 we obtain that H1 belongs to the normalizer

of H2 in Aut(S). As a consequence, both H1 and H2 are normal subgroups of

K = 〈H1, H2〉. Also, observe that since the orders of H1 and H2 are the same,

both have the same index in K.

The group H2 should induce on the orbifold S/H1 a group of automorphisms

isomorphic to some Zm
2 (similarly, the group H1 should induce on the orbifold

S/H2 a group of automorphisms isomorphic to Zm
2 for the same value of m).

As such a group is a subgroup of PSL(2, C), we obtain that m ∈ {0, 1, 2}. The

case m = 0 is not possible as H1 6= H2.

If m = 2, then the six branch values of S/H1 should be invariant under some

Z
2
2 and then, up to a Möbius transformation, they can be chosen to be 0, ∞,

1, −1, i and −i. Let us consider an involution x2 ∈ H2 inducing on S/H1 the

involution that fixes the point ∞. In this way, there is some y ∈ H1 so that yx2

fixes a point q ∈ S over ∞ under the branched covering S → S/H1. Let x1 ∈ H1

be a standard generator that fixes the same point q. As the map yx2 induces
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an involution on S/H1, we have that (yx2)
2 ∈ {1, x1}. If (yx2)

2 = 1, then yx2

and x1 are conformal automorphisms of order 2 on S with q as a common fixed

point. As the stabilizer of a point in the group of conformal automorphisms is

cyclic, it follows that x2 = yx1 ∈ H1, a contradiction to the fact that x2 is not

the identity on S/H1. If (yx2)
2 = x1, then (yx2y)x2 = x1, which means that

x1 ∈ H2; that is, both H1 and H2 share an standard generator, a contradiction

to Lemma 3.7.

The remaining case is m = 1. In this case, every pair of standard generators

a1 and a2 of H2 must project to the same conformal involution on S/H1; in

particular, a1a2 projects to the identity and hence a1a2 ∈ H1. In other words,

there is a subgroup of index two inside H2 which is also contained inside H1,

and H1 ∩ H2
∼= Z4

2. This subgroup acts freely on S, as H1 and H2 do not have

a common standard generator. It follows form the Riemann–Hurwitz formula

that R = S/H1∩H2 is a genus 2 Riemann surface. In this situation any standard

generator of Hj projects to the hyperelliptic involution on R (as the quotient of

R by the projection is the Riemann sphere). Since the hyperelliptic involution

is unique, it follows that if a ∈ H1 and b ∈ H2 are standard generators, then ab

induces the identity on R; that is, ab ∈ H1 ∩H2. This implies that a ∈ H2 and

b ∈ H1 and, in particular, H1 = H2, a contradiction, thus completing the proof

of Theorem 3.1.

Question 1: Are generalized Humbert groups unique for k ≥ 6?

Question 2: In case k = 5, is the set of Weierstrass points equal to the set of

fixed points of the standard generators of the generalized Humbert group?

3.2. Humbert groups are conjugated. In the previous section we have

seen that in the cases k = 4 and k = 5 generalized Humbert groups are unique

in the group of conformal automorphisms of the surface. For greater values of k

this uniqueness is not clear. In this section we observe that any two generalized

Humbert groups acting on the same Humbert curve are conjugated in the group

of conformal automorphisms of the surface. We denote H E F for H being a

normal subgroup of F .

Lemma 3.9: Let (S, H) be a generalized Humbert pair for k ≥ 4. If H E F ≤

Aut(S), then H is the unique generalized Humbert subgroup of type k in F . In

particular, if H E Aut(S), then H is the unique generalized Humbert subgroup

of type k in Aut(S).
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Proof. Assume there exists K ≤ F with K a generalized Humbert subgroup of

type k and K 6= H . Set G = HK and R = H ∩K. Then H E G, |G : H | = |G :

K| and R ≤ Z(G). The group G/H is a 2-subgroup of Aut(S/H), S/H has

the Riemann sphere as underlying Riemann surface and G/H ∼= K/R ≤ Zn
2 .

As already noted earlier, then n ≤ 2; that is, G/H ≤ (Z2)
2 and exp(G) = 4

(the exponent of the group G). We analyze the two possible cases for G/H

separately.

Case (1): Suppose |G/H | = 2.

Consider x ∈ H and y ∈ K such that

H = R × 〈x〉 and K = R × 〈y〉.

Hence G = HK = R〈x, y〉 and 〈x, y〉E G. Since exp(G) = 4, we obtain that

〈x, y〉 is a dihedral group of order eight.

In G we have that

{z1xy, z2yx : zi ∈ R}

is the set of all elements of order four and

{z1, z2x, z3y, z4(xy)2, z5yxy, z6xyx : zi ∈ R, z1 6= 1, z4 6= (xy)2}

is the set of all elements of order two.

Therefore, for each set {α1, α2, . . . , αs} of elements of G we have that

|〈α1, α2, . . . , αs〉| ≤ 2s 23 .

In particular, any generating set of G has at least k − 2 elements, and

applying the Riemann–Hurwitz equation we see that k ≤ 7. Therefore, we only

need to analyze the cases k = 4, 5, 6 and 7.

Since the arguments in each case are similar, we illustrate with the case k = 7.

By the Riemann–Hurwitz equation, the only possibility for the signature of S/G

to be analyzed is (0, 6; 2, 2, 2, 2, 2, 2). Let α1, α2, . . . , α5 be a generating system

for G such that α2
i = 1, i = 1, . . . , 5 and (α1α2α3α4α5)

2 = 1. Since exp(G) = 4,

we may assume that |α1α2| = 4, and it follows that U1 = 〈α1, α2〉 E G. If

(α3α4)
2 = 1, (α3α5)

2 = 1 and (α4α5)
2 = 1, then |〈α3, α4, α5〉| ≤ 23 and

|G| = |U1〈α3, α4, α5〉| ≤ 26, a contradiction. So we may assume that |α3α4| = 4.

Hence U2 = 〈α3, α4〉 E G and |U1 ∩ U2| ≥ 2. Therefore, G = U1U2〈α5〉 and

|G| ≤ 26, a contradiction.
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Case (2): Suppose G/H ∼= Z2
2.

Let M be a maximal subgroup of G such that K ≤ M . Then, by the previous

case, K is the unique generalized Humbert subgroup of type k of M and since

M E G, it follows that K E G.

Consider u, v ∈ H and x, y ∈ K such that H = R ×〈u, v〉 and K = R ×〈x, y〉.

By the previous case, H is the unique generalized Humbert subgroup of type k

of H〈x〉, H〈y〉 and H〈xy〉. Also K is the unique generalized Humbert subgroup

of type k of K〈u〉, K〈v〉 and K〈uv〉. Hence |xu| = |xv| = |yu| = |yu| = 4, and

[x, u] = xuxu ∈ R, [x, v] ∈ R, [y, u] ∈ R.

Set U = 〈u, v, x, y〉. Then G = RU and U E G. A presentation of U is given

as follows.

U = 〈u, v, x, y / u2, v2, x2, y2, (uv)2, (xy)2, (xu)4, (xv)4,

(yu)4, (yv)4, (xuxv)2, (yuyv)2, (uxuy)2, (vxvy)2〉

from where |U | = 28. As in case (1), we obtain that k is odd and k ≤ 11. The

remaining particular cases k = 5, 7, 9, 11 are not difficult to analyze, and thus

the proof is completed.

Proposition 3.10: Let (S, H) be a generalized Humbert pair for k ≥ 4. If

K ≤ Aut(S) is a generalized Humbert subgroup of type k, then there exists

g ∈ 〈H, K〉 such that g conjugates H to K.

Proof. Set F = 〈H, K〉 and let L ≤ F be a 2-Sylow subgroup of F such that H ≤

L. Then, by Sylow’s Theorem, there exists g in F such that Kg = gKg−1 ≤ L.

If H = L, then K is also a 2-Sylow subgroup of F and the conclusion follows.

Otherwise, there is a series of subgroups of L

H = H0 ≤ H1 ≤ H2 ≤ · · · ≤ Hr = L

such that HiEHi+1, for all i = 0, 1, . . . , r−1, with r ≥ 1. Applying the previous

lemma we obtain that H is unique in H1. If H1 = L, we are done. Otherwise, it

follows that H is normal in H2, and we may apply the lemma again to conclude

that H is unique in H2. Repeating the argument as needed, we obtain that H

is the unique generalized Humbert subgroup of type k in L, and we conclude

that Kg = H .
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4. Algebraic description

Consider the canonical holomorphic embedding

jS : S → CP
gk−1

of a hyperbolic generalized Humbert curve S of type k ≥ 4, and hence of genus

gk = 1 + 2k−2(k − 3). As a consequence of the non-hyperellipticity and non-

trigonality of S together with the fact that it is not a plane quintic, it follows

from Petri–Noether’s theorem (see [17]) that there are exactly (gk−3)(gk−2)/2

linearly independent quadrics through jS(S); furthermore, the quadrics can

be chosen of rank at most six. In this section we provide another algebraic

description by means of (k − 1) quadrics in CP
k, which seems to be better

suited for computations.

4.1. Algebraic curves. Let CP
k be the projective space with homogeneous

coordinates x1, . . . , xk+1 and C(λ1, . . . , λk−2) ⊂ CP
k the algebraic curve given

by the following (k − 1) homogeneous polynomials of degree 2:





x2
1 + x2

2 + x2
3 = 0

λ1x
2
1 + x2

2 + x2
4 = 0

λ2x
2
1 + x2

2 + x2
5 = 0

...
...

...

λk−2x
2
1 + x2

2 + x2
k+1 = 0

where λj ∈ C − {0, 1}, λi 6= λj , for i 6= j.

The conditions on the parameters λj assert that C(λ1, . . . , λk−2) is a non-

singular algebraic curve; that is, a closed Riemann surface. On C(λ1, . . . , λk−2)

we have the action of the Abelian group of conformal automorphisms H0
∼= Zk

2

generated by the transformations

aj [x1 : · · · : xk+1] = [x1 : · · · : xj−1 : −xj : xj+1 : · · · : xk+1], j = 1, . . . , k.

If we consider the degree 2k holomorphic map

π : C(λ1, . . . , λk−2) → Ĉ given by π[x1 : . . . : xk+1] = (x2/x1)
2
,

we see that πaj = π, for every aj , j = 1, . . . , k. Since the branch values of π are

{∞, 0,−1,−λ1,−λ2, . . . ,−λk−2},

it follows that (C(λ1, . . . , λk−2), H0) is a generalized Humbert pair of type k.
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As every generalized Humbert pair (S, H) of type k is uniquely determined

by the quotient S/H (by Theorem 2.3), the above construction implies the

following result.

Theorem 4.1: Let (S, H) be a generalized Humbert pair of type k and let

T : S/H → Ĉ be a conformal homeomorphism so that T sends the set of conical

points of S/H into the set {∞, 0,−1,−λ1,−λ2, . . . ,−λk−2}. Then, (S, H) is

conformally equivalent to (C(λ1, . . . , λk−2), H0).

Remark 4.2: (i) The algebraic curve in CP
2 given by

x2
1 + x2

2 + x2
3 = 0

corresponds to the generalized Humbert curve of genus zero with gen-

eralized Humbert group Z2
2, and the locus in CP

3 given by




x2
1 + x2

2 + x2
3 = 0

λ1x
2
1 + x2

2 + x2
4 = 0

corresponds to the generalized Humbert curves of genus one.

(ii) The above algebraic description is well-suited to describe the parameters

λj in order to obtain extra conformal automorphisms of S. For instance,

Case (4) in Proposition 2.6 may be given by the conditions λ2jλ2j−1 = 1,

for 1 ≤ j ≤ (k−2)/2; Case (5) by λ2jλ2j+1 = λ1, for 1 ≤ j ≤ (k−3)/2,

and Case (6) by λ1 = −1 and λ2j+1 = λ2j , for 1 ≤ j ≤ (k − 3)/2.

4.2. Moduli spaces. Let us consider the set Hk of all generalized Humbert

pairs of type k and the natural map

r : Hk → Mgk
: (S, H) 7→ [S],

where Mgk
is the moduli space of curves of genus gk = 1+(k−3)2k−2. The im-

age r(Hk) ⊂ Mgk
is the locus of all conformal equivalence classes of generalized

Humbert curves of genus gk.

Let us consider the equivalence relation in Hk given by the conformal equiv-

alence relation of pairs given in Section 1 and denote by Ĥk the set of these

equivalence classes. If we denote by p : Hk → Ĥk the projection map, then we

have a natural map q : Ĥk → Mgk
so that r = qp.

Proposition 4.3: The map q : Ĥk → Mgk
is injective.
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Proof. The injectivity of the map q may fail only if there is a generalized Hum-

bert curve S admitting two non-conjugate generalized Humbert groups. In this

way, the result follows from Proposition 3.10 (see also Theorem 3.1 for k = 4

and k = 5).

4.3. Parameter spaces. Let us consider the parameter space

Pk = {(λ1, . . . , λk−2) ∈ C
k−2 : λj 6= 0, 1, λj 6= λs for s 6= j}.

The Möbius group PSL(2, C) acts in a natural way on the parameter set

Pk, component-wise. Two tuples in Pk which are equivalent under PSL(2, C)

determine biholomorphic generalized Humbert curves. Therefore, the quotient

Qk = Pk/ PSL(2, C)

defines a finite covering of r(Hk). Each generalized Humbert pair (S, H) of type

k provides a tuple in Pk up to the above action of PSL(2, C). Proposition 3.10

(Theorem 3.1 for k = 4, 5) asserts that for a couple of generalized Humbert pairs

(S, H) and (S, K) there is a conformal automorphism h : S → S conjugating H

onto K. In this way, h induces a conformal automorphism between the orbifolds

S/H and S/K. In particular, this fact together with Proposition 4.3 allows us

to see the following.

Proposition 4.4:

Qk
∼= r(Hk) ∼= Ĥk.

5. Schottky uniformizations of generalized Humbert pairs

In this section we provide Schottky uniformizations for all generalized Humbert

pairs (S, H). We prove that for any generalized Humbert pair (S, H) there

is a Kleinian group K (called a generalized Humbert–Whittaker group) whose

commutator subgroup G = K ′ is a Schottky group that uniformizes S and such

that H = K/G.

5.1. Schottky uniformizations. A Schottky group of genus zero is just

the trivial group. A Schottky group of positive genus is defined as follows.

Assume we have a collection of 2g (g > 0) pairwise disjoint simple loops, say

C1, C′

1, . . . , Cg and C′

g, in the Riemann sphere bounding a common region D

of connectivity 2g, and that there are loxodromic transformations A1, . . . , Ag

so that Aj(Cj) = C′

j and Aj(D) ∩ D = ∅, for each j = 1, 2, . . . , g. The group
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G generated by A1, . . . , Ag is called a Schottky group of genus g > 0. The

collection of loops C1, C′

1, . . . , Cg and C′

g, is called a fundamental system

of loops of G respect to the generators A1, . . . , Ag.

If we denote by Ω the region of discontinuity of a Schottky group G of genus

g, then the quotient S = Ω/G turns out to be a closed Riemann surface of genus

g. The reciprocal is valid by the retrosection theorem [13] (see [4] for a modern

proof using quasiconformal deformation theory). A triple (Ω, G, P : Ω → S)

is called a Schottky uniformization of a closed Riemann surface S if G is

a Schottky group with Ω as its region of discontinuity and P : Ω → S is a

holomorphic regular covering with G as covering group.

If we have a pair (S, H), where S is a closed Riemann surface and H is a

group of conformal automorphisms of S, then we say that H is of Schottky

type if there is a Schottky uniformization (Ω, G, P : Ω → S) of S such that, for

each h ∈ H there is a conformal automorphism k : Ω → Ω, a Schottky lifting

of h, so that h ◦ P = P ◦ k. It is known that k should then be the restriction

of a Möbius transformation [2]. In this way, the group K generated by the

Schottky lifting of all the automorphisms h ∈ H turns out to be a geometrically

finite function group, containing the Schottky group G as a finite index normal

subgroup so that K/G ∼= H . Necessary and sufficient conditions for a group of

automorphisms of a given closed Riemann surface to be of Schottky type can

be found in [8]. In the case of generalized Humbert pairs, every generalized

Humbert group is of Schottky type ([9]).

A Schottky uniformization of a generalized Humbert curve S for which its

generalized Humbert group H lifts will be called a Schottky uniformization

of the generalized Humbert pair (S, H). As a consequence of the above

and Theorem 2.8 we have the following.

Proposition 5.1: Let (Ω0, G0, P0 : Ω0 → S0) be a Schottky uniformization of

a generalized Humbert pair (S0, H0). Let us denote by K0 the geometrically

finite group generated by the lifting of all automorphisms of H0. If (S, H) is

a generalized Humbert pair of the same type, then there is a quasiconformal

homeomorphism ω : Ĉ → Ĉ, such that K = ωK0ω
−1 is a group of Möbius

transformations and

(Ωω = ω(Ω0), Gω = ωG0ω
−1, Pω : Ωω → S)

is a Schottky uniformization of the generalized Humbert pair (S, H).
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As a consequence of Proposition 5.1, if we construct a geometrically finite

function group K0 which contains as a normal subgroup a Schottky group G0

such that

K0/G0
∼= Z

k
2

and Ω0/K0 has signature (0, k + 1; 2, . . . , 2), then we obtain, by quasiconfor-

mal deformation of K0, Schottky uniformizations for all generalized Humbert

pairs (S, H) so that the corresponding lifted groups K are topologically (quasi-

conformally) conjugated. As a consequence, we need only to find one concrete

example of Schottky uniformization of a generalized Humbert pair for each k.

5.2. Real generalized Humbert–Whittaker groups. In this section we

provide a construction of Schottky uniformizations of generalized Humbert pairs

(S, H) with the property that S admits an anticonformal involution with fixed

points (a reflection) which commutes with every element of H . We consider

only the case that the reflection projects to S/H as a reflection that fixes each

of the conical points. Similar constructions may be done for the other possible

cases.

Let us consider a chain of k circles on the complex plane, say

C1, C2, . . . , Ck,

such that:

(1) Cj is orthogonal to the unit circle C0, for j = 1, . . . , k;

(2) Cj is orthogonal to Cj+1, for j = 1, . . . , k − 1;

(3) Cj is disjoint from Ci, for i /∈ {j − 1, j, j + 1}, for j = 2, . . . , k − 1 and

i = 1, . . . , k;

(4) all of the circles C1, . . . , Ck bound a common domain D.

Let σ denote the reflection on the unit circle C0, and let σj be the reflection

on the circle Cj , for j = 1, . . . , k. Consider the following elliptic transformations

of order two:

Ej = σ ◦ σj , for j = 1, . . . , k.

Then the group K generated by the transformations E1, . . . , Ek is a geomet-

rically finite function group (using Klein–Maskit’s combination theorems [15]).

The group K keeps invariant the unit circle (that is, it is an extended Fuchsian

group of the second kind). Moreover, K has a presentation as follows

〈E1, . . . , Ek : E2
1 = · · · = E2

k = (E2E1)
2 = (E3E2)

2 = · · · = (EkEk−1)
2 = 1〉.
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If Ω is the region of discontinuity of K, then Ω consists of the union of the unit

disc, the exterior unit disc and a countable collection of open arcs in the unit

circle. The quotient orbifold Ω/K has signature (0, k +1; 2, . . . , 2). Let G = K ′

be the commutator subgroup of K. If we consider the surjective homomorphism

Φ : K → Z
k
2 = 〈x1, . . . , xk : x2

j = (xixj)
2 = 1〉,

defined by

Φ(Ej) = xj , j = 1, . . . , k,

then G is the kernel of Φ, and furthermore

(i) G is a torsion free normal subgroup of K;

(ii) K/G ∼= Zk
2 ;

(iii) G is the smallest normal subgroup in K containing the transformations

(E3E1)
2, . . . , (EkE1)

2, (E4E2)
2, . . . , (EkE2)

2, . . . , (EkEk−2)
2,

The above properties assert that G is a finitely generated second kind torsion

free Fuchsian group, hence a Schottky group.

Then Ω/G is a generalized Humbert curve of type k, with generalized Hum-

bert group H = K/G ∼= Zk
2 . The group K will be called a real generalized

Humbert-Whittaker group of type k and the corresponding Schottky group

G (that is, its commutator subgroup) a real generalized Humbert Schottky

group of type k.

Remark 5.2 (Parameters): In the above construction we have infinitely many

different real generalized Humbert–Whittaker groups of the same type k. Let

K = 〈E1, . . . , Ek〉 be a real generalized Humbert–Whittaker group of type k.

Up to conjugation by a suitable Möbius transformation we may assume that

the extended real line is invariant under K and that E1(z) = 1/z and E2(z) =

(5z − 4)/(4z − 5). In this way, the group K is determined by the fixed points

of E3, . . . , Ek. If we denote by ak < bk the fixed points of Ek, then we should

have b3 = E2(a3) = (5a3 − 4)/(4a3 − 5), b4 = E3(a3), . . . , bk = Ek−1(ak). In

particular, the parameters of K are given by the (k − 2) real parameters:

a3, a4, . . . , ak,

so that

2 < a3 < b3 < a4 < b4 < · · · < ak < bk.
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Now, each of the (normalized) real generalized Humbert–Whittaker group K

has the property that the reflection σ(z) = z commutes with every element of

it. Then the Riemann surface S uniformized by K admits a reflection induced

by σ (that is, a real structure). If H = K/G ∼= Zk
2 is the generalized Humbert

group of S, then σ induces a reflection on S/H , that fixes each of the branch

values. It is not hard to see (by use of quasiconformal deformation theory) that

the reciprocal also holds.

Theorem 5.3: Let (S, H) be a generalized Humbert pair of type k so that S

admits a reflection σ : S → S, commuting with every element of H , and such

that it defines a reflection on S/H that fixes each of the (k + 1) conical points.

Then (S, H) is uniformized by a suitable real generalized Humbert–Whittaker

group.

5.3. Generalized Humbert–Whittaker groups. Let K0 be a real general-

ized Humbert–Whittaker group of type k. Any group K obtained by quasicon-

formal deformation of K0 will be called a generalized Humbert–Whittaker

group of type k. The commutator subgroup G = K ′ turns out to be a Schot-

tky group (obtained as the image of G0 by such a deformation) and we call

it a generalized Humbert Schottky group of type k. The correspond-

ing quasicircles obtained as images of the circles C1, . . . , Ck will be called a

fundamental set of loops of K with respect to the generators E1, . . . , Ek.

As a consequence of Proposition 5.1 and the above constructions, we obtain

the following result.

Theorem 5.4: Let (S, H) be a generalized Humbert curve of type k. Then,

there exists a generalized Humbert–Whittaker group K of type k, with corre-

sponding generalized Humbert Schottky group G = K ′ of type k (its commu-

tator subgroup), such that S is uniformized by G and S/H is uniformized by

K.

Remark 5.5: Consider a hyperbolic generalized Humbert pair (S, H) of type

k ≥ 4. We know that S can be uniformized by the commutator subgroup Γ′

of a Fuchsian group Γ uniformizing S/H so that H = Γ/Γ′. The group Γ

can be constructed from a hyperbolic polygon as follows. Consider a compact

hyperbolic polygon P ⊂ H2 with k sides and such that the sum of all internal

angles is π. The sides of P are denoted by σ1, . . . , σk, in counterclockwise order.

Let xj be the order two elliptic isometry whose fixed point is the middle point



188 A. CAROCCA ET AL Isr. J. Math.

Figure 1. Fundamental domains for Γ′ and Γ when k = 4

of the side σj . As a consequence of Poincaré’s hyperbolic polygon theorem, the

group Γ̂ generated by the involutions x1, . . . , xk is a Fuchsian group with P as

fundamental domain. Moreover, a complete set of relations for Γ̂ is given by

x2
1 = · · · = x2

k = (x1x2 · · ·xk)2 = 1

and H2/Γ̂ has signature (0, k +1; 2, . . . , 2). As a consequence of quasiconformal

deformation theory, we may assume that Γ̂ = Γ. A fundamental region for Γ′

is obtained by an appropriate gluing of 2k copies of P ; Figure 1 illustrates the

case k = 4, where the external sides are numbered anticlockwise from 1 to 32,

and the pairing is given by

1 − 24, 2 − 11, 3 − 30, 4 − 13, 5 − 28, 6 − 23, 7 − 22, 8 − 17,

9 − 32, 10 − 15, 12 − 21, 14 − 19, 16 − 25, 18 − 27, 20 − 29, 26 − 31.

Consider N , the smallest normal subgroup of Γ containing the elements

(x2x1)
2, (x3x2)

2, . . . , (xk+1xk)2,

where xk+1 = x1x2 . . . xk. Since the axes of any two of these hyperbolic trans-

formations do not intersect, we have that Ω = H2/N is a planar surface. The

group K = Γ/N is a group of automorphisms of Ω, and it is a generalized
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Humbert–Whittaker group of type k that uniformizes S/H . Its commutator

subgroup G = K ′ (that is, its generalized Humbert–Schottky group of type k)

is a Schottky group that uniformizes S.

5.4. Extended generalized Humbert–Whittaker groups. In this sec-

tion we construct a certain class of groups which contains a generalized

Humbert–Whittaker group as a normal subgroup of index two, and such that the

corresponding generalized Humbert–Schottky group is also normal. In particu-

lar, the generalized Humbert curve uniformized by such a generalized Humbert–

Schottky group admits a Z2-extension of a generalized Humbert group as a

group of conformal automorphisms. We first do the construction for the real

case.

5.4.1. Real extended generalized Humbert–Whittaker groups. Let us consider a

chain of l + 1 circles on the complex plane, say

C1, C2, . . . , Cl, D

so that:

(1) D and Cj are orthogonal to the unit circle C0, for j = 1, . . . , l;

(2) Cj is orthogonal to Cj+1, for j = 1, . . . , l − 1;

(3) Cj is disjoint from Ci, for i /∈ {j − 1, j, j + 1}, for j = 2, . . . , l − 1 and

i = 1, . . . , l;

(4) D is disjoint from all circle Cj , for j = 1, . . . , l − 1;

(5) D intersects Cl at exactly two points, and the intersection angle is π/m,

where m ∈ {2, 4};

(6) all of the circles C1, . . . , Cl, D bound a common domain D.

Let σ be, as before, the reflection on the unit circle C0, σj be the reflection on

the circle Cj , for j = 1, .., l, and σD be the reflection on D. Define the following

elliptic transformations of order two:

Ej = σσj , for j = 1, . . . , l,

F = σσD.

The group K̂0 generated by the transformations E1, . . . , El and F is a ge-

ometrically finite function group (using Klein–Maskit’s combination theorems

[15]), which keeps invariant the unit circle (that is, it is an extended Fuchsian
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group of the second kind). If Ω is the region of discontinuity of K̂0, we have that

Ω/K̂0 has signature (0, 4; 2, 2, 2, 4). Moreover, the group K̂0 has presentation

K̂0 = 〈E1, . . . , El, F : E2
1 = · · · = E2

l = F 2 = 1

(E2E1)
2 = (E3E2)

2 = · · · = (ElEl−1)
2 = (FEl)

m = 1〉, m ∈ {2, 4}.

The group K̂0 will be called a real extended generalized Humbert–

Whittaker group.

Theorem 5.6: The real extended generalized Humbert–Whittaker group K̂0

contains a real generalized Humbert–Whittaker group as a normal subgroup

of index two. In particular, the corresponding generalized Humbert Schottky

group is also a normal subgroup, then of index four, of K̂0.

Proof.

1.-. In the case m = 4, we consider

El+r = F ◦ El+1−r ◦ F, r = 1, . . . , l.

The group K0 generated by E1, . . . , E2l turns out to be a real generalized

Humbert–Whittaker group. The only relation that needs to be verified is (El+1◦

El)
2 = 1, which is a consequence of the relation (FEl)

4 = 1.

2.-. In the case m = 2, we consider

El+r = FEl−rF, r = 1, . . . , l − 1.

The group K0 generated by E1, . . . , E2l−1 turns out to be a real generalized

Humbert–Whittaker group.

3.- Normality of the generalized Humbert–Schottky group. Let G0 be the real

generalized Humbert–Schottky group of K0 above. Since G0 is the commutator

subgroup of K0, we clearly have G0 ⊳ K̂0.

5.4.2. Extended generalized Humbert–Whittaker groups. Let us consider a real

extended generalized Humbert–Whittaker group K̂0. Any group K̂ obtained

by quasiconformal deformation of K0 will be called an extended generalized

Humbert–Whittaker group. As a consequence of the above construction,

we have uniformized the families described in Cases (4) and (5) of Proposition

2.6.
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Theorem 5.7: Let K̂ be an extended generalized Humbert–Whittaker group

of type k and let K be its index two generalized Humbert group with respec-

tive generalized Humbert–Schottky group G = K ′ E K̂. Then the generalized

Humbert curve S uniformized by G admits a group Ĥ = K̂/G of conformal

automorphisms isomorphic to a Z2-extension of the generalized Humbert group

H ; the corresponding generalized Humbert pair (S, H) belongs to one of the

families defined in case (4) or (5) of Proposition 2.6, depending on the parity

of k. Conversely, every such pair may be so obtained.

Remark 5.8: The cases (1), (2), (3) and (6) of Proposition 2.6 cannot be de-

scribed in terms of Schottky uniformizations, as they do not satisfy the necessary

conditions given in [8].
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